12 research outputs found

    A Change Execution System for Enterprise Services with Compensation Support

    Full text link
    Modern enterprises rely on a distributed IT infrastructure to execute their business processes, adopting Service Oriented Architectures in order to improve the flexibility and ease of adaptation of their functions. Nowadays this is a vital characteristic, as the increased competition forces companies to continuously evolve and adapt. SOA applications must be supported by management and deployment systems, which have to continuously apply modifications to the distributed infrastructure. This article presents a modelbased solution for automatically applying change plans to heterogeneous enterprise managed environments. The proposed solution uses models which describe in an abstract language the changes that need to be applied to the environment, and executes all the required operations to the specific managed elements. Also, to ensure that the environment ends in a stable state, compensation for previously executed operations is supported. The validation results from a case study taken from the banking domain are also presented here

    An architecture for a heterogeneous private IaaS management system

    Get PDF
    Cloud computing and, more particularly, private IaaS, is seen as a mature technology with a myriad solutions tochoose from. However, this disparity of solutions and products has instilled in potential adopters the fear of vendor and data lock-in. Several competing and incompatible interfaces and management styles have given even more voice to these fears. On top of this, cloud users might want to work with several solutions at the same time, an integration that is difficult to achieve in practice. In this paper, we propose a management architecture that tries to tackle these problems; it offers a common way of managing several cloud solutions, and an interface that can be tailored to the needs of the user. This management architecture is designed in a modular way, and using a generic information model. We have validated our approach through the implementation of the components needed for this architecture to support a sample private IaaS solution: OpenStac

    A Model-Based Monitoring Architecture for Heterogeneous Enterprise Services and Information Systems

    Full text link
    Runtime management of distributed information systems is a complex and costly activity. One of the main challenges that must be addressed is obtaining a complete and updated view of all the managed runtime resources. This article presents a monitoring architecture for heterogeneous and distributed information systems. It is composed of two elements: an information model and an agent infrastructure. The model negates the complexity and variability of these systems and enables the abstraction over non-relevant details. The infrastructure uses this information model to monitor and manage the modeled environment, performing and detecting changes in execution time. The agents infrastructure is further detailed and its components and the relationships between them are explained. Moreover, the proposal is validated through a set of agents that instrument the JEE Glassfish application server, paying special attention to support distributed configuration scenarios

    A federated repository for PaaS components in a multi-cloud environment

    Get PDF
    Cloud computing has seen an impressive growth in recent years, with virtualization technologies being massively adopted to create IaaS (Infrastructure as a Service) public and private solutions. Today, the interest is shifting towards the PaaS (Platform as a Service) model, which allows developers to abstract from the execution platform and focus only on the functionality. There are several public PaaS offerings available, but currently no private PaaS solution is ready for production environments. To fill this gap a new solution must be developed. In this paper we present a key element for enabling this model: a cloud repository based on the OSGi component model. The repository stores, manages, provisions and resolves the dependencies of PaaS software components and services. This repository can federate with other repositories located in the same or different clouds, both private and public. This way, dependencies can be fulfilled collaboratively, and new business models can be implemented

    A Model-based Repository for Open Source Service and Component Integration.

    Get PDF
    Open source is a software development paradigm that has seen a huge rise in recent years. It reduces IT costs and time to market, while increasing security and reliability. However, the difficulty in integrating developments from different communities and stakeholders prevents this model from reaching its full potential. This is mainly due to the challenge of determining and locating the correct dependencies for a given software artifact. To solve this problem we propose the development of an extensible software component repository based upon models. This repository should be capable of solving the dependencies between several components and work with already existing repositories to access the needed artifacts transparently. This repository will also be easily expandable, enabling the creation of modules that support new kinds of dependencies or other existing repository technologies. The proposed solution will work with OSGi components and use OSGi itself

    A repository for integration of software artifacts with dependency resolution and federation support

    Full text link
    While developing new IT products, reusability of existing components is a key aspect that can considerably improve the success rate. This fact has become even more important with the rise of the open source paradigm. However, integrating different products and technologies is not always an easy task. Different communities employ different standards and tools, and most times is not clear which dependencies a particular piece of software has. This is exacerbated by the transitive nature of these dependencies, making component integration a complicated affair. To help reducing this complexity we propose a model-based repository, capable of automatically resolve the required dependencies. This repository needs to be expandable, so new constraints can be analyzed, and also have federation support, for the integration with other sources of artifacts. The solution we propose achieves these working with OSGi components and using OSGi itself

    A Model-Based Approach for the Management of Electronic Invoices

    Get PDF
    The globalized market pushes companies to expand their business boundaries to a whole new level. In order to efficiently support this environment, business transactions must be executed over the Internet. However, there are several factors complicating this process, such as the current state of electronic invoices. Electronic invoice adoption is not widespread because of the current format fragmentation originated by national regulations. In this paper we present an approach based on Model-Driven Engineering techniques and abstractions for supporting the core functions of invoice management systems. We compare our solution with the traditional implementations and try to analyze the advantages MDE can bring to this specific domain

    Research challenges for cross-cloud application

    Get PDF
    Federated clouds can expose the Internet as a homogeneous compute fabric. There is an opportunity for developing cross-cloud applications that can be deployed pervasively over the Internet, dynamically adapting their internal topology to their needs. In this paper we explore the main challenges for fully realizing the potential of cross-cloud applications. First, we focus on the networking dimension of these applications. We evaluate what support is needed from the infrastructure, and what are the further implications of opening the networking side. On a second part, we examine the impact of a distributed deployment for applications, assessing the implications from a management perspective, and how it affects the delivery of quality of service and non-functional requirements

    An automated Model-based Testing Approach in Software Product Lines Using a Variability Language.

    Get PDF
    This paper presents the application of an automated testing approach for Software Product Lines (SPL) driven by its state-machine and variability models. Context: Model-based testing provides a technique for automatic generation of test cases using models. Introduction of a variability model in this technique can achieve testing automation in SPL. Method: We use UML and CVL (Common Variability Language) models as input, and JUnit test cases are derived from these models. This approach has been implemented using the UML2 Eclipse Modeling platform and the CVL-Tool. Validation: A model checking tool prototype has been developed and a case study has been performed. Conclusions: Preliminary experiments have proved that our approach can find structural errors in the SPL under test. In our future work we will introduce Object Constraint Language (OCL) constraints attached to the input UML mode

    An online failure prediction system for private IaaS platforms

    Get PDF
    The size and complexity of cloud environments make them prone to failures. The traditional approach to achieve a high dependability for these systems relies on constant monitoring. However, this method is purely reactive. A more proactive approach is provided by online failure prediction (OFP) techniques. In this paper, we describe a OFP system for private IaaS platforms, currently under development, that combines di_erent types of data input, including monitoring information, event logs, and failure data. In addition, this system operates at both the physical and virtual planes of the cloud, taking into account the relationships between nodes and failure propagation mechanisms that are unique to cloud environments
    corecore